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ANALYSIS OF THE DISPLACEMENT FIELD FOR LOCALIZED DISTURBANCES
IN A STRATIFIED FLUID WITH SHEAR

INTRODUCTION

Many theoretical and experimental studies have been devoted to various aspects of
the two-dimensional collapse of a mixed region in a stratified fluid. Bell and Dugan [1]
and Merritt [2] describe work in this area up to about 1974. Interest in the phenomenon
is due in large part to its relevance as a model for collapse of the turbulent wake of a self-
propelled body moving through a stratified ocean.

The complexity of the phenomenon, which involves localized turbulent mixing in a
stratified fluid and the generation of internal waves, has led many investigators [3-10] to
study an initial-value problem involving a two-dimensional disturbance. Implicit in this
simplification is the assumption that no mixing occurs following the initial time. Schooley
and Stewart [11], in the first demonstration of the wake collapse phenomenon behind a
moving self-propelled body, introduced the use of such initial-value problems in order to
gain some understanding of the salient features of the collapse process.

We present here an analysis of an initial-value problem involving a localized distur-
bance in a stratified fluid which has a background shear. Although shear flows are gen-
erally present in the ocean, only the recent work of Hartman [6] incorporates shear in a
mathematical model of collapse. Our objective is to demonstrate that certain features of
the displacement field of fluid particles can be calculated directly from the initial data of
the problem. The calculation is made with the Lagrangian viewpoint and is valid for
finite-amplitude disturbances in an incompressible, viscous stratified fluid which is supposed
nondiffusive.

In addition we consider the inverse question whereby inferences about the nature of
the initial disturbance are drawn from data describing the shape of the initial perturbed
region. The results obtained may prove useful to experimentalists as a means for esti-
mating the degree of homogeneity of mixed regions.

The present results may be viewed as a generalization of earlier work [12] in which
the collapse occurred in fluid which was at rest outside the localized disturbance. From
a theoretical point of view both works give examples of the fact that the Lagrangian view
can be used to obtain exact information in some rather complicated situations.

An elementary application of the results is made to simplify an argument of Stock-
hausen, Clark, and Kennedy [131 concerning zero net convergence above the region of
initial disturbance.

Manuscript submitted August 16, 1976.
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THE INITIAL-VALUE PROBLEM

Case of Laminar Motion

The mathematical model we use is that of an incompressible, viscous, stratified fluid
which is regarded as nondiffusive. The assumption that the fluid is nondiffusive means
that those quantities affecting the density, such as temperature and salinity, are not altered
by molecular diffusion. Consequently the density of each fluid particle remains unchanged
during its motion. The model is widely used in the study of stratified fluids [14].

The Eulerian form of the governing equations is

VU = 0, (1)

dp
dp = °' (2)
dt

du
d = -Vp + pg + V-T (3)

for all times t > 0. The fluid velocity is designated by u, the density by p,4the pressure
by p, the constant gravitational field by g, and the viscous stress tensor by T. The time
derivative in Eqs. (2) and (3) is the material derivative.

For simplicity we assume an infinite fluid, with no free surface and no bottom
boundary. Although the analysis to be carried out can be applied to many situations
involving a free surface or bottom boundary, the discussion of all possible cases would be
unnecessarily long and might conceal the simplicity of the actual considerations involved
in the analysis.

We use two coordinate frames (x, y, z) and (X, Y, Z) that are coincident to describe
the motion of the fluid. A time-dependent background shear motion described by the
velocity field (U(y, t), 0, W(y, t)) is permitted. Superposed on this background motion
we suppose there to be an initial localized disturbance described by a local velocity dis-
turbance and a local deformation of the isopychnals, both independent of z. Figure 1 is
a sketch of the situation. We make the basic assumption that the background motion is
stable with respect to the initial disturbance.

Our interest is in the motion of fluid particles x = x(X, t), defined by

x = X + d(X, t), (4)

and our particular interest is in the displacement of fluid particles d(X, t). Since particles
in any z = constant plane experience the same forces, the displacement field d is independ-
ent of Z.

We assume that at t = 0 the localized disturbance can be expressed as

P(X Y, 0) = Pe(Y) + 6p(X, Y) (5)

and the initial velocity field as
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Fig. 1-Infinite fluid with time-dependent background shear flow and an initial
localized disturbance. U(y, t) and W(y, t) are components of the shear flow.

U(X, Y, 0) = U(Y, 0) + 6U(X, Y). (6)

The finite-amplitude initial disturbance described by 5p and 5u is assumed to vanish as
JXI - -o. The density Pe(Y) represents the stratification prevailing at large horizontal
distances from the localized disturbance.

From the Eulerian equations we find that the background motion must satisfy

P au a2U
e = P-i (7)

and

Pe aatW= A, aa All (8)

where ,u is the mechanical viscosity of the fluid. Equations (7) and (8) state that the
background motion is modified by diffusion. Since we shall deal with an infinite fluid,
we regard the background motion as a specified solution of Eqs. (7) and (8).

This completes our description of the formal initial-value problem for laminar flows.
Before proceeding with its study, we first make some remarks about a similar initial-value
problem which arises in the case of localized regions of turbulent mixing produced by the
motion of a self-propelled body through a stratified fluid.
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Remarks on the Disturbance Created by the Motion of a Self-Propelled Body

We give a brief discussion of a mathematical model for the generation of internal
waves by the turbulent wake of a self-propelled body. The model originated with the
work of Schooley and Stewart [11] and has received much attention from theorists and
experimentalists [1-13]. Our aim is to demonstrate that the governing equations for the
mean disturbance (the ensemble average disturbance) bear a close resemblance to those
for the laminar flow already discussed and that useful results follow from this fact.

When a self-propelled body moves rapidly through a stratified ocean environment,
its turbulent wake mixes the fluid and initially increases in cross section through entrain-
ment of fluid outside the wake. Eventually the intensity of the turbulence diminishes to
such an extent that buoyancy forces the mixed fluid back toward an appropriate equilib-
rium level and the vertical dimension of the wake reduces in size. This phase of the wake
behavior is referred to as the gravitational-collapse phase and is accompanied by the prop-
agation of internal waves away from the wake region. A primary assumption of the present
mathematical model is that significant mixing of the fluid no longer occurs once the gravi-
tational collapse has begun.

Since the rate at which the moving body generates mixed fluid is usually large in
comparison to the rate at which gravitational collapse occurs, the assumption is made in
the model that the mean or ensemble average characteristics of the collapse process can
be regarded as independent of distance along the track of the body.

We express the disturbance as

u = U(x, y, t) + U', (9)

P = Pav(X, Y, t) + p, (10)

p = P(x, y, t) + p', (11)

where Pav, U, P are ensemble average quantities. We use (*) to indicate an ensemble aver-
age; consequently the fluctuations satisfy

(u') = 0,

(pi') = O

= 0.

Time t is measured from the initiation of the collapse process.

The ensemble average quantities contain the mean background shear flow, the mean
density anomaly due to prior turbulent mixing of the fluid, and the mean internal wave
disturbance resulting from collapse of the density anomaly. The basic equations govern-
ing the evolution of the ensemble average disturbance are

4



NRL REPORT 8050

VU= 0, (12)

dpav (13)
dt = 0,

P dT) -VP + Pavg + V T (14)

The absence from the right side of Eq. (13) of terms involving the fluctuating quantities
reflects our assumption of no mixing during the collapse phase.

We can interpret Eqs. (12) through (14) as describing the motion of particles which
move about in accord with the ensemble average motion U (x, y, t). Particle paths for the
ensemble average motion are calculated from

dx
Tt 

Equations (12) and (13) correspond to Eqs. (1) and (2) for the laminar motion discussed
earlier.

It shall become clear that our results for net displacements in the laminar case can
also be deduced for the ensemble average motion just described. The reason for this is
that the results do not depend on the explicit form of the momentum equation, only on
its qualitative features. The features required are that localized disturbances eventually
decay, thus allowing the disturbed fluid to return to an equilibrium state specified by the
background shear and density field.

THE DIRECT PROBLEM

Preliminaries

We now return to the initial-value problem for the laminar flow outlined earlier. In
the direct problem the initial configuration is assumed known. The aim here is to demon-
strate how certain features of the motion can be deduced without having to solve for the
complex flow field. The Lagrangian view is used.

On physical grounds it is clear that as time progresses, the energy contained in the
localized disturbance will be radiated into the surrounding fluid and ultimately dissipated
by viscous forces. Thus eventually the motion will again be horizontal in accord with
Eqs. (7) and (8), with Pe(Y) describing the stratification throughout the fluid. At suf-
ficiently large times the velocity of particles can be written in the form

dt U(y*t), (15)

dy
dy = °' (16)dt

5



JOHN M. BERGIN

dz = W(y, t), (17)

where

y = y*(XY) (18)

specifies the final vertical level of the fluid particle initially at X, Y.

The forms of Eqs. (15) through (17) suggest that we write the particle motion in the
forms

x = X + t(X, Y t) + f U(y*, t) dt, (19)

Y = Y + (X, Y, t), (20)

z = Z + t(X, Y, t) + ft W(y*, t) dt . (21)

If there were no initial disturbance to the fluid, the particle motion would be specified
by Eqs. (19) through (21) with the I, 77, and ¢ terms absent. Consequently, I, 7i, and ¢
specify the full contribution to the displacement field arising as a consequence of the
gravitational collapse of the initial localized disturbance.

From Eqs. (15) through (17) we conclude that at large times (large in comparison
to the effective collapse time, which is controlled by the Brunt-Vaisala period) we must
have

lim t(X, Y, t) = t*(X, Y) , (22)
t-+oo

lim 71(X, Y, t) = 71*(X, Y), (23)
t-.om

lim t(X, Y, t) = .*(x Y) (24)
t-*o

We shall demonstrate in the following that it is possible to compute t* and 7* directly
from the initial data of the problem.

We are making some formal assumptions here. We assume that the initial-value
problem possesses a well-behaved solution for 0 < t < o-. (A rigorous proof does not
exist.) This requires, in part, that the background flow must be stable, and, from stabil-
ity theory, this places requirements on the Richardson number, as discussed by Turner [15,
pp. 100 ff].

We must also have the background flow be stable with respect to the localized dis-
turbance of finite amplitude which we prescribe through the initial conditions. The collapse
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may, in some cases, produce internal waves which interact with the background shear in
such a fashion as to lead to amplification of the waves (critical layer behavior) and to the
possibility of wave breakdown [15, p. 124]. Such behavior seems to imply that our
initial-value problem does not always possess a well-behaved solution; however general
criteria do not exist. In a recent paper Hartman [16] treats a linearized initial-value
problem for a two-dimensional, unbounded, exponentially stratified, plane Couette flow.
No difficulties are encountered because of critical layer behavior.

Net Vertical Displacement

From Eq. (2) the density of a particle at time t must be the same as the density of
the particle initially. This yields

p[x(t), y(t), z(t), t] = Pe(Y) + 5p(X, Y) . (25)

But as t e oc, y(t) - y*(X, Y), and, since the ultimate density field is again described by
Pe, Eq. (25) becomes

Pe(Y*) Pe(Y + +*) = Pe(Y) + 5p(X, Y). (26)

Equation (26) is the determining condition for the net vertical displacement 71*(X, Y) in
terms of the initial data.

Although this implicit condition for 1* can be solved explicitly for many stratifica-
tions of interest, we record here the solution

X7* (X, Y) = d p(X, Y), (27)

which is valid for those cases in which Pe(Y) is linear over the vertical extent of the initial
disturbance.

Net Horizontal Displacement

For the determination of t*(X Y) we use the Lagrangian condition

a(x, y, z) = 1 (28)
a (X, Y,Z)

which is a consequence of incompressibility and conservation of mass. The notation
indicates the Jacobian of the transformation expressed by Eqs. (19) through (21). Since
the x and y coordinates of a particle do not depend on Z, Eq. (28) can be simplified to
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ax
ax

ax
ay 0

0

1

ay ay
ax ay

az az
ax ay

ax ax
ax ay
= ~~= 1.
ay ay
ax ay

(29)

For the class of problems under consideration Eq. (29) places no restriction on ¢ and our
methods will yield no information about this component of the displacement field.

Substitution of the expressions in Eqs. (19) through (21) into Eq. (29) yields, when
written out,

(1 + ax +ax U(Y*,t)dt)(1 + M -(Y + aY t U(y*, t) dt) a- = 1.

It is preferable to write this result in the form

(1 + at 1 + ay - at U(y*,t)dt] ay - [ a- t U(y *t)dtCay = l,

and carrying out the differentiation of the integrals provides

(1 + a1) ( + Ta') at atx+
Eft au(y*, t) 1lay* ay ay*

ay* dtJ(ax ayir ay

Because

1m (ay* ay ay* ay ay* ay* ay* ay*

t-+ (ax ay ay ax/ ax ay ay ax

the limiting form of Eq. (30) as t - o- becomes

a/*l at* an* at* a _31

(1 + a ) a ~ ya (31)\ ayJ ax -ax ay ay- ( 

We have already seen how 27* can be determined from the initial data. Equation (31)
then represents a linear first-order partial-differential equation for the determination of
t*(X Y).

8
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Comparison to the Case of No Shear

The equations for the determination of t*(X Y) and q*(X Y) are precisely the same
equations as found earlier [12] in the case of no background motion. In the present case
t* has a different interpretation, since the shear motion itself produces a contribution to
the displacement field. From Ref. 12 we have at once that t* can be solved for by using
the method of characteristics, with the characteristic equations given by

do*= 7 (32)

dX as*
d~a = 1 + ay (33)

dY an
da ax

The parameter a identifies points on a characteristic. We further have that the character-
istics in the XY plane are those curves specifying the initial forms of the isopychnals.

In the earlier case of no shear [12] we confined ourselves to symmetric disturbances.
We then had t*(Q, Y) = 0 as initial data for the solution of Eqs. (32) through (34). In
the presence of shear however we no longer have such a condition even for symmetric
disturbances. Consequently the initial data available allow the determination of only the
relative quantity t*(X, Y) - t*, where t* is the unknown value of t*(X Y) for some
point on the same isopychnal that the point (X, Y) is on.

A Simple Application to the Net Convergence of Fluid Particles

Stockhausen, Clark, and Kennedy [13] describe a laboratory experiment in which a
self-propelled body moved through a stratified fluid. They give an argument [13, pp. 72
and 78] that a net convergence between two fluid particles can occur only when the
particles are at a depth level where mixing has taken place.

We give here a rigorous proof that the statements of Stockhausen, Clark, and Kennedy
apply to the initial-value problem we have been examining. Consider two fluid particles
P and Q initially on an undisturbed isopychnal as shown in Fig. 2. We have 5p(X, Y) = 0
for all points on the isopychnal, and Eq. (26) provides the result that n*(X, Y) = 0 for
all points on the isopychnal. Using this result in Eqs. (32) through (34), we get dt*IdX = 0,
and this can be integrated to obtain t*(P) = t*(Q).

Since y*(x Y) = Y for all points on the isophchnal, Eqs. (19) through (21) provide

x(P, t) = Xp + (P, t) + J U(Yp, t) dt

and, since YQ = YP,

9
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P Q
a p

IOCHNALS

U (y,t)

,X'

REGION CONTAINING THE INITIAL DISTURBANCE

Fig. 2-State of disturbance at t = 0 in the xy plane, with the dashed
lines indicating the region containing the initial disturbance. P and Q
identify two fluid particles lying initially on an undisturbed iso-
pychnal. The component of the background shear flow normal to the
xy plane is not drawn.

x(Q, t) = XQ + t(Q, t) + U(Yp, t) dt.

Subtracting the two expressions, we get

X(P, t) - x(Q, t) = Xp - XQ + W(P, t) - (Q, t) 

The limit of this as t - °° provides the ultimate separation of the particles P and Q in the
x direction as

x*(P) - x*(Q) = Xp - XQ + t*(P) -

= Xp - XQ,

which is precisely equal to their initial separation.

We conclude that no net convergence occurs between particles such as P and Q lo-
cated on an isopychnal outside the region of initial disturbance. A net convergence can
occur only if P and Q are at the level of the initial disturbance region. This is perhaps
an unexpected result. One's initial expectation is that as the initial disturbance resolves
itself into a system of internal waves which propagate through the body of the fluid, the
end result would be particles whose locations have been shifted about relative to one
another. The severe constraint conferred on the fluid by stratification prevents such relative
shifting.
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REMARKS ON THE INVERSE PROBLEM

A matter of great practical importance is the nature of the disturbance in the fluid
at the end of a brief period of localized, turbulent mixing. The complexity of the phe-
nomena makes such information difficult to obtain by direct measurement.

We consider, within the context of our initial-value problem, an indirect method for
obtaining information about the initial deformation of the isopychnals. In effect we con-
sider an inverse problem in which it is assumed that the background stratification is known
as well as the shapes of the disturbed region at t = 0 and at some time t large in compari-
son to the time scale of collapse. An earlier report [12] dealt with this question in the
case of a zero shear environment. Although the earlier results can be generalized to the
situation of collapse in a shear environment, we prefer to give instead a new result which
seems to be more generally useful.

Consider the initial configuration of the fluid as shown in Fig. 3a. By hypothesis we
know the boundary C within which the initial disturbance is confined. A typical iso-
pychnal of density pe which passes through C has a form as shown in Fig. 3a. Outside C
the isopychnal is horizontal at its equilibrium level, while inside C it is deformed. Let
A(pe, t) denote the area enclosed between the material particles initially composing the
isopychnal pe and the particles which initially form the boundary C lying above the iso-
pychnal (Fig. 3). As a consequence of the incompressibility of the fluid this area remains
constant throughout the motion, so that

A(pe, t) = A(Pe, 0)

for all time.

We now prove that the area A(pe, t) is always bounded by C and the isopychnal Pe.
From the nondiffusive nature of the fluid we know that the fluid particles retain their
density throughout the motion. Consequently isopychnals are material curves, as is the
curve C. We conclude that A(pe, t) is always bounded by the particles comprising C and
the isopychnal Pe.

By hypothesis we know the initial and "final" configurations of the material contour
C. A final configuration of the fluid is one in which the isopychnals must be horizontal
and at the same level as given by the known initial data. Therefore we can evaluate
A(pe, °°) for any isopychnal passing through C and, by the above argument, we then have
A(pe, 0) for each isopychnal passing through the initial contour C.

From Fig. 3a it is clear that knowledge of A(pe, 0) can be used to calculate the area
enclosed between the position of the deformed isopychnal pe and its final equilibrium
level. This information immediately provides the average level of the isopychnal pe within
the initial region.

We thus have a means for using the initial and final shapes of the disturbed fluid to
estimate average characteristics of the initial disturbance. This method may prove to be
of use in estimating such quantities as the degree of homogeneity of localized disturbances.
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ISOPYCHNAL Pe

BOUNDARY C

(a) t = 0

(b) t >> time scale of collapse

Fig. 3-Initial and final configurations of the region contain-
ing the initial disturbance. C denotes the boundary of the
region in the xy plane. A(Pe, t) is the area at time t enclosed
between the isopychnal of density Pe and the boundary C.

CONCLUSION

We considered an initial-value problem involving a two-dimensional localized disturb-
ance in an incompressible, viscous, stratified fluid. A time-dependent background shear
flow was incorporated in the analysis. Although the problem was considered within the
framework of laminar flow theory, we pointed out that similar results can be obtained
for the ensemble-average motion resulting from the collapse of a localized region of
turbulent mixed fluid.

The results are perhaps best thought of as an extension of earlier results [12] ob-
tained for the case of no background motion. Again the Lagrangian view has been used
to advantage.

It was demonstrated for the general class of initial-value problems considered that
certain components of the net displacement field could be calculated directly from the
initial data. This calculation is effectively exact and holds for finite-amplitude disturb-
ances. A simple application was made to the net convergence of fluid particles. A poten-
tial application of the results is in the partial verification of computer algorithms devised
for the solution of initial-value problems of the type considered.

12
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We also examined the inverse problem, which is of particular interest in the experi-
mental investigation of localized mixed regions in stratified fluids. The intent of the in-
verse problem is to use limited knowledge of the net displacement field, such as might be
obtained by simple measurements, to infer characteristics of the initial disturbance. We
demonstrated that knowledge of the initial and final material configurations of the shape
of the region containing the initial disturbance provides a means for estimating mean
characteristics of the initial isopychnal deformation. Thus our study of the mathematical
problem suggests that a certain correlation must exist between the shape of the mixed
region and the initial disturbance.
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